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1. 

When dealing with the classical, Lagrange–Germaine theory of vibrating rectangular
plates, one encounters severe mathematical difficulties in the case of free edges, since
satisfying the governing, natural boundary conditions is a rather difficult task. The
situation is more critical if the plate possesses variable thickness, or the plate material
is orthotropic or anisotropic, etc. The subject matter has been extensively discussed
by A. W. Leissa in a very thorough and accurate treatment of vibrating rectangular
plates [1].

In that paper, Leissa used the approximation

W(x, y)2Wa (x, y)= s
p,q

Ap,qXp (x)Yq (y), (1)

where Xp and Yq are normalized eigenfunctions exactly satisfying the equation of motion
of a freely vibrating, uniform beam. Furthermore, Xp and Yq satisfy the clamped, simply
supported or free edge condition at the ends of the beam. Hence, clamped and simply
supported plate edge conditions are exactly satisfied by use of the beam functions, but free
edge conditions are only approximated.

The present study was motivated by a research program dealing with: (1) the use of
Rayleigh’s optimization concept [2] when trigonometric functions are employed; (2) the
analysis of the relative accuracy of frequency coefficients when the classical Rayleigh–Ritz
method and different co-ordinate functions are used. In the latter, the results were
compared with extremely accurate results (and also upper bounds) determined by means
of the finite element method [3].

The configuration shown in Figure 1 is considered and the numerical experiments
reported herein are restricted to the fundamental frequency coefficient V1 =zrh/Dv1a2.

2.        , g.

Following reference [4], it was decided to approximate the fundamental mode of
vibration using a simple polynomial in y which satisfies the boundary conditions at y=0,b
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(see Figure 1) and a pseudo-Fourier expansion which complies with the essential boundary
conditions at x=0. Consequently, one expresses the displacement amplitude as

W(x, y)2Wa (x, y)= [(y/b)2 − 5
3(y/b)3 + 2

3(y/b)4] s
J

j=1

Aj sin2 px/gja, g1 q 1. (2)

Substituting equation (2) in the functional

J[W]= (Umax)− (Tmax), (3)

where Umax is the maximum strain energy and Tmax is the maximum kinetic energy, and
minimizing it with respect to the A'j s, one obtains, from the non-triviality condition, a
secular determinant the lowest root of which is the fundamental frequency coefficient V1.
Since

V1 =V1(g1, g2, . . . , gJ ), (4)

from the minimization condition

1V1/1gj =0 (j=1, 2, . . . J) (5)

one determines an optimized value of V1. The procedure is essentially a non-linear
optimization method.

3.  

Numerical determinations have been performed taking m (the Poisson ratio) to be equal
to 0·30 and making J=1, 2 and 3 in equation (2). In Table 1 is presented a comparison
of values of V1 for a/b=2·5, 1·5, 1, 2/3 and 0·4. The first line of the table depicts values
determined in reference [1], evaluating the eigenvalues of a 36th order determinant, and
the second, third and fourth lines depict values of V1 determined by means of Rayleigh’s
optimization criterion and the pseudo-Fourier expansion (2). Finally, the fifth line presents
fundamental eigenvalues determined by means of the finite element method, based on the
very accurate element developed by Bogner et al. [3]. The number of nodes and degrees
of freedom is indicated in the table for each case. The discretization of the structure when
a/b=1 is shown in Figure 2.

Figure 1. A rectangular plate with a free edge executing transverse vibrations.



   260

T





1

A
co

m
pa

ri
so

n
of

va
lu

es
of

V
1
=

z
r
h/

D
a2 v

1.

a/
b

=
2·

5
a/

b
=

1·
5

a/
b

=
1

a/
b

=
2/

3
a/

b
=

0·
4

L
ei

ss
a

[1
]

98
·1

00
36

·6
45

7
17

·6
15

9·
34

89
5·

37
25

O
pt

im
iz

at
io

n
98

·8
16

3
37

·1
49

1
18

·0
08

4
9·

64
05

5·
55

83
ap

pr
oa

ch
g 1

=
(2

·2
1)

(2
·4

0)
(2

·6
4)

(3
·1

3)
(3

·2
8)

(t
ri
go

no
m

et
ri
c

se
ri
es

ex
pa

ns
io

n)
98

·1
78

7
36

·6
53

5
17

·6
23

1
9·

36
32

5·
39

48

g j
=

(6
0,

1·
04

)
(5

0,
1·

11
)

(4
·2

2,
1·

09
)

(3
·6

6,
1·

09
)

(3
·4

8,
1·

08
)

98
·0

65
6

36
·6

02
8

17
·5

93
5

9·
34

62
5·

38
56

g j
=

(6
0,

1·
00

,0
·5

0)
(5

0,
1·

08
,0

·5
3)

(4
·2

5,
1·

07
,0

·5
4)

(3
·2

7,
1·

00
,0

·5
2)

(3
·4

8,
1·

06
,0

·5
4)

F
.
E

.
m

et
ho

d
97

·7
34

0
36

·4
87

3
17

·5
40

5
9·

31
84

5·
36

46
D

eg
re

es
of

fr
ee

do
m

44
8

46
8

48
4

46
8

44
8

N
od

es
16

×
9

13
×

9
11

×
11

9
×

13
7

×
16



121

100

11

1
56

6

9

y

8

7

5

4

3

2

12 23 34 45 67 89 11178

120

x

119

118

117

116

115

114

113

112

1106622 33 44 55 77 9988

10

    261

Figure 2. The discretization of the plate (a/b=1).

The three-term optimized trigonometric expansion yields results which are slightly lower
than the results determined in reference [1]. An exception is made for the configuration
a/b=0·4. On the other hand, both sets of results are slightly higher than the very accurate
results determined by means of the finite element code.

The differences are certainly not significant from a practical, designer’s viewpoint but,
from an academic standpoint and since the three methodologies yield upper bounds, one
concludes that for the present case the ranking in accuracy is as follows: (1) the finite
element results, (2) the three-term pseudo-Fourier optimized expression, and (3) the
36-term beam function solution.
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